Design Issues for Peer-to-Peer Massively Multiplayer Online Games

MMVE’09

Lu Fan, Phil Trinder, and Hamish Taylor
Heriot-Watt University, Edinburgh, UK
Overview

- Background
- Design Issues for P2P MMOGs
 - Interest Management
 - Event Dissemination
 - NPC Host Allocation
 - State Persistency
 - Cheating Mitigation
 - Incentives
- Classification of P2P MMOG Designs
- Discussion
Background

- Conventional MMOG architectures
 - Client/Server, e.g.
 - Sony’s EverQuest 2
 - Blizzard’s World of Warcraft
 - Middleware & Service Platforms, e.g.
 - IBM’s Butterfly Grid
 - Sun’s Game Server technology
 - In nature
 - Either dedicated game servers
 - Or shared game server clusters
Background

- **C/S or Middleware**
 - **Advantages**
 - Relatively easy to implement
 - Relatively easy to secure
 - **Disadvantages**
 - Reliability – single failure points
 - **Cost**
 - Server hardware
 - Network bandwidth
 - Housing & Cooling
 - Electricity & UPS
 - Maintenance staff
Background

❖ Engineering Peer-to-Peer MMOGs

Game server functions:
• Managing players’ positions
• Processing game events
• Controlling NPCs
• Maintaining the game world
• Security reinforcement
• Accounting

P2P MMOG design issues:
• Interest Management
• Event Dissemination
• NPC Host Allocation
• State Persistency
• Cheating Mitigation
• Incentives
Design Issues 1: Interest Management

- Objective: avoid broadcasting game events to all players
- Approaches:
 - Spatial models
 - Players communicate with nearby objects
 - Objects outside a player’s vicinity are ignored
 - E.g. *Voronoi ’04, Scalable & Low Delay ’05*
 - Region-based models
 - A game world is partitioned into multiple regions
 - A player subscribes to all game events from appropriate regions
 - E.g. *Distributed ’04, IM Middleware ’05*
 - Hybrid models
 - Partition the game world into regions
 - Select a super-peer in each region to facilitate a spatial model
 - E.g. *MOPAR ’05, Meta-Model ’06*
Design Issues 1: Interest Management

- IM Discussion
 - Spatial Models
 - Advantages: fine-grained
 - Drawbacks: communication overhead may be high
 - Suitable for unicast
 - Region-based Models
 - Advantages: simple, bandwidth efficient
 - Drawbacks: coarse-grained
 - Suitable for multicast
 - Hybrid Models
 - Combines the first two approaches
 - Current implementations ignore load-balancing & fault-tolerance
Design Issues 2: Event Dissemination

- **Objective:** deliver game events quickly and efficiently

- **Approaches:**
 - **Unicast**
 - A player distributes game events to all recipients directly
 - E.g. *Voronoï ’04, Scalable & Low Delay ’05*
 - **Application-Level Multicast (ALM)**
 - A player distributes game events to a small number of forwarders
 - Forwarders relay events to other peers recursively
 - E.g. *P2P Support ’04, P2P Architecture ’06*
 - **Locality-aware ALM**
 - Players in the vicinity are used as forwarders
 - Players closer to the source receive events faster
 - E.g. *N-Tree ’05, pSense ‘08*
Design Issues 2: Event Dissemination

Event Dissemination Discussion

- **Unicast**
 - Advantages: lower communication latency
 - Drawbacks: consumes more bandwidth
 - Can be ameliorated by using fine-grained IM

- **General ALM**
 - Advantages: bandwidth efficient
 - Drawbacks: typically induce longer latency

- **Locality-aware ALM**
 - Advantages: bandwidth efficient, exploits tolerance of weak synchronisation
 - Drawbacks: complex, higher computation overhead
Design Issues 3: NPC Host Allocation

- **Objective:** host non-player characters (NPCs) on peers
- **Approaches:**
 - **Region-based**
 - Game world is partitioned into regions
 - Each region selects a super-peer to host all NPCs
 - E.g. *Zoned Federation ’04, P2P Support ’04*
 - **Virtual-Distance-based**
 - An NPC is hosted by the closest player
 - E.g. *AtoZ ’04, Colysues ’06, Voronoi State ’08*
 - **Heterogeneous Task Sharing**
 - Share multiplayer NPCs among ‘nearby’ peers
 - Resource availability & QoS are considered during task allocation
 - E.g. *Deadline-Driven Auctions (DDA) ’09*
Design Issues 3: NPC Host Allocation

NPC Host Allocation Discussion

- Region-based
 - Early means of NPC hosting
 - A number of issues: super-peer selection, load-balancing, QoS…

- Virtual-Distance-based
 - Advantages: minimises communication latency & overhead for 1:1 interactions
 - Drawbacks: QoS for 1:N interactions, NPC host switching

- Heterogeneous Task Sharing
 - Advantages: maximises resource utility, reduces latency for 1:N interactions, less NPC host switching
 - Drawbacks: complex, must be combined with 1:1 NPC hosting
Design Issues 4: State Persistence

Objective: store players' profiles between game sessions

Approaches:
- General Storage Infrastructures
 - Large scale persistent data store utilities
 - Mostly designed for P2P file sharing application
 - E.g. *OceanStore ’00, PAST ’01*
- Special Persistency Mechanisms
 - Classify the data to be stored into multiple categories, e.g. ephemeral & permanent, deal with each category in separate ways
 - Expedite data read/write with caching mechanisms
 - E.g. *Zoned Federation ’04, P2P Architecture ’06*
Design Issues 4: State Persistence

❖ State Persistence Discussion
 - General Storage Infrastructures
 - Advantages: well distributed, highly consistent, secure, scalable, available, and durable.
 - Drawbacks: high redundancy, slow reading & writing
 - Special Persistence Mechanisms
 - Advantages: customised for MMOGs, fast reading & writing
 - Drawbacks: complex, immature, less secure
 - A major challenge, and potential for further research
Design Issues 5: Cheating Mitigation

Objective: prevent cheating, or detect & remedy suspicious game sessions

Approaches:

Proactive Mechanisms

- Advanced information exposure protocols that prevent unfair knowledge acquisition, e.g. *Mitigating Information Exposure ’05*
- Advanced event ordering protocols that prevent fixed-delay, suppressed update and other cheating, e.g. *NEO ’04, SEA ’06, EASES ’08*

Reactive Mechanisms

- Referee-based monitoring & log audit, e.g. *LA ’05, Cheat Detection ’06*
- Mutual monitoring among all the players, e.g. *FreeMMG ’04, DaCAP ’08*
- Behavioural monitoring for indications of cheating play, e.g. *Detection of Cheating ’07*
Design Issues 5: Cheating Mitigation

Cheating Mitigation Discussion

- **Proactive Mechanisms**
 - Advantages: effective and forceful
 - Drawbacks: applies to specific vulnerabilities, needs to know method of exploitation in advance.

- **Reactive Mechanisms**
 - Advantages: broad-spectrum
 - Drawbacks: not so rigorous

- Crucial for justifying P2P MMOGs’ practicality
- An active research field starting to bear fruit – many new mechanisms proposed in the last couple of years!
Design Issues 6: Incentive Mechanism

✎ Objective: persuade participants to contribute resources to the MMOG

✎ Approaches:

- Accounting Systems
 - Credit – record players historical contribution
 - Debit – entitle all player to roughly equivalent resources, e.g. DCRC ’03, DDA Incentive Model ’09

- Reputation Systems
 - Mutual-rating-based trustworthiness aggregation algorithms
 - Anonymous-request-based honesty measurement algorithms
 - e.g. Local Reputation ’07, Proactive Reputation ’08, REPS ‘08
Design Issues 6: Incentive Mechanism

❖ Incentive Discussion

- P2P systems are voluntary resource sharing systems.
- Individual concerns vs. collective welfare
- Require both:
 - Accounting
 - To quantify resource contribution & consumption
 - To identify selfish participants
 - To facilitate reciprocity
 - Reputation
 - To evaluate participants’ honesty & dependability
 - To discourage disadvantageous behaviours
 - To reinforce the accounting mechanism
Classification of P2P MMOG Designs

<table>
<thead>
<tr>
<th>P2P MMOG Architectures</th>
<th>Interest Management</th>
<th>Event Dissemination</th>
<th>NPC Host Allocation</th>
<th>State Persistency</th>
<th>Incentive Mechanism</th>
<th>Overall Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43] P2P Support ’04</td>
<td>Region-based</td>
<td>ALM</td>
<td>Region-based</td>
<td>None</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[16] Distributed ’04</td>
<td>Region-based</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Distributed</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[18] OPeN ’05</td>
<td>Aura-Nimbus</td>
<td>Unicast</td>
<td>None</td>
<td>Centralised</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[28] P2P Arch ’06</td>
<td>Region-based</td>
<td>ALM</td>
<td>None</td>
<td>PAST</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[30] VAST ’07</td>
<td>Voronoi</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Centralised</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[20] Mediator ’07</td>
<td>Hybrid</td>
<td>Unicast</td>
<td>Task Sharing</td>
<td>PAST</td>
<td>DCRC</td>
<td>Complete</td>
</tr>
</tbody>
</table>

P2P Support ’04

- Partitions game world into large regions to apply coarse-grained IM
- Disseminates game events using Scribe ALM
- Hosts all NPCs in a region using a single super-peer
- No game state persistence
- No incentive mechanisms
- A prototype application “SimMud” has been implemented
Classification of P2P MMOG Designs

<table>
<thead>
<tr>
<th>P2P MMOG Architectures</th>
<th>Interest Management</th>
<th>Event Dissemination</th>
<th>NPC Host Allocation</th>
<th>State Persistency</th>
<th>Incentive Mechanism</th>
<th>Overall Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43] P2P Support ’04</td>
<td>Region-based</td>
<td>ALM</td>
<td>Region-based</td>
<td>None</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[16] Distributed ’04</td>
<td>Region-based</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Distributed</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[18] OPeN ’05</td>
<td>Aura-Nimbus</td>
<td>Unicast</td>
<td>None</td>
<td>Centralised</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[28] P2P Arch ’06</td>
<td>Region-based</td>
<td>ALM</td>
<td>None</td>
<td>PAST</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[30] VAST ’07</td>
<td>Voronoi</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Centralised</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[20] Mediator ’07</td>
<td>Hybrid</td>
<td>Unicast</td>
<td>Task Sharing</td>
<td>PAST</td>
<td>DCRC</td>
<td>Complete</td>
</tr>
</tbody>
</table>

- **Distributed ’04**
 - ☺ Partitions game world into small regions & applies a hierarchical IM
 - ☺ Disseminates game events via unicast
 - ☺ Supports a simple distance-based NPC host allocation mechanism
 - ☺ Suggests a special game state persistency mechanism
 - ☹ No incentive mechanisms
 - ☹ No demonstration application
Classification of P2P MMOG Designs

<table>
<thead>
<tr>
<th>P2P MMOG Architectures</th>
<th>Interest Management</th>
<th>Event Dissemination</th>
<th>NPC Host Allocation</th>
<th>State Persistency</th>
<th>Incentive Mechanism</th>
<th>Overall Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43] P2P Support ‘04</td>
<td>Region-based</td>
<td>ALM</td>
<td>Region-based</td>
<td>None</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[16] Distributed ‘04</td>
<td>Region-based</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Distributed</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[18] OPeN ‘05</td>
<td>Aura-Nimbus</td>
<td>Unicast</td>
<td>None</td>
<td>Centralised</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[28] P2P Arch ‘06</td>
<td>Region-based</td>
<td>ALM</td>
<td>None</td>
<td>PAST</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[30] VAST ‘07</td>
<td>Voronoi</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Centralised</td>
<td>REPS</td>
<td>Complete</td>
</tr>
</tbody>
</table>

OPeN ’05

- ☺ Supports fine-grained IM using a novel spatial data index service
- ☺ Disseminates game events via unicast
- ☹ NPC host allocation is undefined
- ☺ Stores players’ profiles using a centralised database
- ☹ No incentive mechanisms
- ☺ A simple P2P MMOG application has been implemented
Classification of P2P MMOG Designs

<table>
<thead>
<tr>
<th>P2P MMOG Architectures</th>
<th>Interest Management</th>
<th>Event Dissemination</th>
<th>NPC Host Allocation</th>
<th>StatePersistency</th>
<th>IncentiveMechanism</th>
<th>OverallEvaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43] P2P Support ’04</td>
<td>Region-based</td>
<td>ALM</td>
<td>Region-based</td>
<td>None</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[16] Distributed ’04</td>
<td>Region-based</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Distributed</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[18] OPeN ’05</td>
<td>Aura-Nimbus</td>
<td>Unicast</td>
<td>None</td>
<td>Centralised</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[28] P2P Arch ’06</td>
<td>Region-based</td>
<td>ALM</td>
<td>None</td>
<td>PAST</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[30] VAST ’07</td>
<td>Voronoi</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Centralised</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[20] Mediator ’07</td>
<td>Hybrid</td>
<td>Unicast</td>
<td>Task Sharing</td>
<td>PAST</td>
<td>DCRC</td>
<td>Complete</td>
</tr>
</tbody>
</table>

P2P Arch ’06

- Partitions game world into large regions to apply coarse-grained IM
- Disseminates game events using Scribe ALM
- No NPC host allocation
- Stores players’ data in a distributed way using PAST
- No incentive mechanism
- No demonstration application
Classification of P2P MMOG Designs

<table>
<thead>
<tr>
<th>P2P MMOG Architectures</th>
<th>Interest Management</th>
<th>Event Dissemination</th>
<th>NPC Host Allocation</th>
<th>State Persistency</th>
<th>Incentive Mechanism</th>
<th>Overall Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43] P2P Support '04</td>
<td>Region-based</td>
<td>ALM</td>
<td>Region-based</td>
<td>None</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[16] Distributed '04</td>
<td>Region-based</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Distributed</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[18] OPeN '05</td>
<td>Aura-Nimbus</td>
<td>Unicast</td>
<td>None</td>
<td>Centralised</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[28] P2P Arch '06</td>
<td>Region-based</td>
<td>ALM</td>
<td>None</td>
<td>PAST</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[30] VAST '07</td>
<td>Voronoi</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Centralised</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[20] Mediator '07</td>
<td>Hybrid</td>
<td>Unicast</td>
<td>Task Sharing</td>
<td>PAST</td>
<td>DCRC</td>
<td>Complete</td>
</tr>
</tbody>
</table>

VAST ’07

😊 Proposes a remarkable Voronoi assisted fine-grained IM mechanism
😊 Disseminates game events via unicast
😊 Proposes a good distance-based NPC host allocation mechanism
😊 Suggests storing players’ data using centralised game servers
😊 Proposes a novel mutual-rating-based reputation system
😊 A prototype application “ASCEND” has been implemented
Classification of P2P MMOG Designs

<table>
<thead>
<tr>
<th>P2P MMOG Architectures</th>
<th>Interest Management</th>
<th>Event Dissemination</th>
<th>NPC Host Allocation</th>
<th>State Persistency</th>
<th>Incentive Mechanism</th>
<th>Overall Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43] P2P Support '04</td>
<td>Region-based</td>
<td>ALM</td>
<td>Region-based</td>
<td>None</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[16] Distributed '04</td>
<td>Region-based</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Distributed</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[18] OPeN '05</td>
<td>Aura-Nimbus</td>
<td>Unicast</td>
<td>None</td>
<td>Centralised</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>[28] P2P Arch '06</td>
<td>Region-based</td>
<td>ALM</td>
<td>None</td>
<td>PAST</td>
<td>None</td>
<td>Simple</td>
</tr>
<tr>
<td>[30] VAST '07</td>
<td>Voronoi</td>
<td>Unicast</td>
<td>Distance-based</td>
<td>Centralised</td>
<td>REPS</td>
<td>Complete</td>
</tr>
<tr>
<td>[20] Mediator '07</td>
<td>Hybrid</td>
<td>Unicast</td>
<td>Task Sharing</td>
<td>PAST</td>
<td>DCRC</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Mediator ’07

- 🎈 Adopts a MOPAR-like hybrid IM scheme
- 🎈 Disseminates game events via unicast
- 🎈 Proposes a novel heterogeneous task sharing infrastructure
- 🎈 Supports game state persistency with PAST
- 🎈 Supports a native accounting mechanism that is similar to DCRC
- 🎈 Key components & a test-bed application have been implemented
Discussion

❖ Conclusions
 ▪ Classical C/S architectures suffer from various drawbacks
 ▪ We articulate a set of six design issues for P2P MMOGs
 ▪ We present design alternatives & discuss their implications
 ▪ We classify & compare representative P2P MMOG designs
 ▪ P2P MMOG architecture are improving rapidly

❖ Future Work
 ▪ To refine the Mediator framework & DDA infrastructure
 ▪ To evaluate Mediator MMOG prototype
Thank you for your attention!

Q & A

Lu Fan lf16@hw.ac.uk
Phil Trinder p.w.trinder@hw.ac.uk
Hamish Taylor h.taylor@hw.ac.uk

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, UK